
26 The Delphi Magazine Issue 38

Under Construction:
MIDAS, CORBA And TClientDataSet
by Bob Swart

The TClientDataSet component,
(part of Delphi Client/Server)

is one of the core components of
Inprise’s middleware strategy. It
connects a client to a MIDAS,
CORBA or MTS server.

TClientDataSet
Let’s see how we can integrate
some middleware technology
(such as MIDAS or CORBA) with
our client components and appli-
cations to turn them into multi-tier
applications.

MIDAS stands for MIddle-tier
Distributed Application Services.
MIDAS 1 supports COM/DCOM,
OLEnterprise/RPC and later
TCP/IP sockets, whilst MIDAS 2
now also supports CORBA and
DCOM/MTS.

CORBA stands for Common
Object Request Broker Arch-
itecure, and can be seen as a
multi-platform version of DCOM,
supported by OMG. The Visigenic
(now Inprise) VisiBroker ORB is
one of the most common. Espe-
cially since it’s used in Netscape
and licensed by companies like
Sun, Oracle and IBM.

Both MIDAS and CORBA can be
used as a technique to share data
and objects between computers on
a network (clients and servers).
The difference between MIDAS and
CORBA is the fact that MIDAS
Server only runs on NT, and the
client can run on NT (DCOM) or
anything else (using CORBA). A
CORBA Server, on the other hand,
can run anywhere.

The MIDAS Server
So much for the theory. Let’s start
with a very basic example of a dis-
tributed (N-Tier) application using
MIDAS. First, we’ll create the
MIDAS Server Application. This
can be done by starting with a regu-
lar project, renaming it to
MidasServer, and adding a Remote

Data Module to it (on the Multitier
tab of the Object Repository). Note
that we can actually create three
Server Data Modules here: for
CORBA, for MTS (Microsoft Trans-
action Server) and for MIDAS.

Once we double-click on the
(MIDAS) Remote Data Module, we
get the Remote Data Module
Wizard, in which we can specify
the ClassName (DrBobMIDAS), the
instance type and threading
model. For instancing, we can
chose between Internal, Single
Instance or Multiple Instance.
Internal is the type we need to use
when the Remote Data Module is
added to an active Library (DLL).
Since Instance makes sure only one
instance of the Remote Data
Module is created inside the exe-
cutable, each client gets its own
instance of the executable. With
Multiple Instances we get one
instance of the application (pro-
cess) that will create all instances
of the Remote Data Modules. Each
client gets one Remote Data
Module, but they all share the
same process space.

If we select Internal instancing,
we also need to specify the thread-
ing model to indicate how client
calls are passed to the Remote
Data Module. This can be
Single, Apartment, Free or
Both. Single means that the
DLL will only get up to one
request at a time, so no
threading issues are
involved. The other choices
mean that each instance of
the Remote Data Module
will service up to one
request at a time, while the
DLL itself may handle multi-
ple requests in separate
threads.

Since we only need a
Single Instance, we don’t
need to worry about the
Threading Model.

After we click OK, Delphi gener-
ates a new remote data module and
adds it to the current project. We
can now use this remote data
module just like a normal data
module and drop table and query
components on it. In fact, let’s drop
a TTable component on it, set the
DatabaseName to DBDEMOS and the
TableName to Customer.DB. Set the
Active property to True, so we
know that the data can be seen.

This table, called TableCustomer,
will be one that our MIDAS Server
Application needs to ‘provide’ to
our yet-to-build client application.
We can specify this by
right-clicking with the mouse on
the TTable component and select-
ing the Expert TableCustomer from
data module pop-up menu entry
(Figure 1).

Note that the pop-up menu
option is only visible the first time.
Right after we actually exported
the table, we don’t see the option
again when we right-click on the
TableCustomer component (but if
you close your project and re-open
it again, the option is also available
again, so it’s not 100% perfect, yet).

Note that this only works for one
table. If we have more than one
table on the Remote Data Module,

➤ Figure 1

October 1998 The Delphi Magazine 27

then, for every TTable or TQuery
component we want to export, we
need to put a TProvider component
on the remote data module and
connect it to that particular
dataset. The reason it does work
for one table is because a Remote
Data Module also contains a
default provider, which can be
used in case of a single one dataset
(as in our simple example).

The source code generated by
Delphi for our Remote Data
Module, including TableCustomer
which is now exported, is shown in
Listing 1. As we can see, exporting
TableCustomer actually generated
source code for the method
Get_TableCustomer, which returns
an IProvider (an interface to Pro-
vider), which means it can, and
will, be called by the MIDAS client
application connecting to this
MIDAS server. Note the initial-
ization section, where the
TComponentFactory.Create method
is called, with the arguments of our
TDrBobMIDAS ComServer, specifying
both the ciSingleInstance and
tmSingle options. If we decide that
we should specify Multiple
Instances or Internal and the
Apartment Threading model, then
we can manually change these
options here.

Now, there’s one final thing we
need to do to our MIDAS Server
before we can safely compile and
run it, and that’s make sure we can
recognise it when we see it later on
in this article. We can do this by
putting something familiar on the

application’s main form,
such as a big TLabel com-
ponent as in Figure 2.

Now, we can compile
and run the application,
which will also automati-
cally register it as a MIDAS Server
(so we’ll be able to find it when we
start to write the MIDAS client).

The MIDAS Client
As a separate MIDAS client, we can
use just about any application,
DLL, ActiveForm or whatever. All
we need are a few components
from the MIDAS tab and the
DBCLIENT client support DLL.

Let’s start the Delphi 4 Project
Manager, save the first project as
MidasServer and add a new appli-
cation called MidasClient. The new
Project Manager will show both
applications as in Figure 3 (a big
thank you to Inprise for the Project
Manager: I can finally add more than
one project and target to a project
group, without having to close and
re-open projects!).

In order to make sure our MIDAS
client application can be called a
thin-client indeed, we should
refrain from including the BDE.
This means that the resulting client
should be a standalone client,
requiring no BDE, no BDE installa-
tion and no difficult BDE setup
[Hooray! Ed]. In fact, apart from the
211,424 bytes DBCLIENT DLL, you
could call the MIDAS thin client a
zero configuration application, as
some people indeed do.

To get an idea of the MIDAS com-
ponents we can use, take a look at
the MIDAS tab of the Component

➤ Listing 1

unit Unit2;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ComServ, ComObj, VCLCom, StdVcl, BdeProv, DataBkr, DBClient, MidasServer_TLB,
Db, DBTables;

type
TDrBobMIDAS = class(TRemoteDataModule, IDrBobMIDAS)
TableCustomer: TTable;

private
public
protected
function Get_TableCustomer: IProvider; safecall;

end;
var DrBobMIDAS: TDrBobMIDAS;
implementation
{$R *.DFM}
function TDrBobMIDAS.Get_TableCustomer: IProvider;
begin
Result := TableCustomer.Provider;

end;
initialization
TComponentFactory.Create(ComServer, TDrBobMIDAS,
Class_DrBobMIDAS, ciSingleInstance, tmSingle);

end.

➤ Figure 2

Palette (Figure 4). TRemoteServer
and TMidasConnection are only
included for backwards compati-
bility and should be avoided.
Which leaves the two provider
components, four connection
components, the ObjectBroker and
the ClientDataSet.

The provider components, used
on the server, are used to export
data from a dataset, and send it to
a connected client. The connec-
tion components, used by the
thin client, define the protocol
used to connect the client to the
server (using DCOM, CORBA,
OLEnterprise or a simple TCP/IP
Socket). The SimpleObjectBroker
component can be used to locate a
server for a connection compo-
nent from a list of available appli-
cation servers. Finally,
TClientDataSet, also used on the
client, is the most powerful of all,
implementing a data-
base-independent dataset that can
be used in a thin client to receive
data from a multi-tiered database
server application.

We can drop a TDCOMConnection
component on the main form of
our thin client application. Now we
need to set the ServerName prop-
erty to the MIDAS Server that we
created a minute ago. Remember
that we also executed the MIDAS
Server, to make sure it’s registered
on our machine, so we should see
the name of the MIDAS Server
application when we click on the
dropdown listbox for the
ServerName property of the
DCOMConnection1 component. It
should be MidasServer.DrBobMIDAS.

Now that we’ve defined the con-
nection between the client and the
server, it’s time to drop on the
TClientDataSet component and
hook its RemoveServer property up
to the DCOMConnection1 component.
Next, we should set the value of the
ProviderName, which can only take
one possible value, namely

28 The Delphi Magazine Issue 38

TableCustomer (Figure 5). Note that
the list of possible ProviderNames
are just the tables (providers)
exported from the MIDAS Server
application, which in this case is
TableCustomer. Now all we need is a
TDataSource connected to the
ClientDataSet1 component, and a
TDBGrid component (for example)
connected to DataSource1.

Finally, we can set the Connected
property of DCOMConnection1 and
Active property of ClientDataSet1
to True to get a ‘live’ data feed from
the MIDAS Server application. Note
that once we set the Connected
property of the DCOMConnection1
component to True, the MIDAS
Server itself is started (it may take
some time). As we made sure to put
an identifying label on the MIDAS
Server form, it’s easy to recognise.

Briefcase Model
There’s one more thing to note
with respect to TClientDataSet. If
we connect to the MIDAS Server
and disconnect again, we still see
data in the DBGrid component (pro-
vided we set ClientDataSet1.
Active to True). This is due to cach-
ing, of course. However, just
re-think this statement once more.
The data inside the TClientDataSet
is cached on the thin client, even
when the server is not available!

This is called the briefcase
model, where the TClientDataSet
caches its data to and from disk as
long as we’re disconnected from
the (MIDAS) data Server.
TClientDataSet is using the
SaveToFile and LoadFromFile
methods for this.

The conse-
quence of this is
that the
TClientDataSet
encapsulates the
power of a
mini-DBMS. Of
course, a number of
restrictions apply
and we can never
get the perfor-
mance of the BDE
or a real DBMS, but
at least we can edit,

append, insert, delete and modify
records in the dataset without
being connected to the real data-
base. In real life, this means we can
disconnect our client machine
from the server, perform our nec-
essary changes, additions or what-
ever, and re-connect whenever we
need to synchronise our changes
with the server database. Again,
power almost beyond belief in this
single TClientDataSet component.

TClientDataSet does not support
multi-user access to data (it’s
stored on the local disk or .DFM file
on this single client machine), nor
does it support SQL, but it does
support filters, indices, calculated
fields, BLOBs, master-detail rela-
tionships and nested tables. A
topic worthy of an article in itself!

CORBA
Now that we have seen the MIDAS
Server and Client, we can do the
same with CORBA. However,
instead of creating a (Remote)
CORBA Data Module and
re-creating the same server again,
we can enable our existing server
to support CORBA as well, thereby
making an application that can ser-
vice both COM and CORBA clients
simultaneously.

The trick is to go back to the
source code editor for the Remote
Data Module (in the MidasServer
project), and right click with the
mouse. This brings up a pop-up
menu, where we need to select the
Expose as CORBA Objectmenu entry.

This simple, albeit non-obvious,
action results in two changes in
the MIDAS server source code for
unit2. First, four extra units are
added to the uses clause (CorbInit,
CorbaObj, ComCorba and CorbaVcl).
Second, a new line is inserted in
the initialization section with a
call to TCorbaVclComponentFactory.
Create to create a CORBA interface
for this server as well (Listing 2).

Having a MIDAS/CORBA Server
and a MIDAS Client, all we need to
do now is create a third project in
our group, called CorbaClient.
This time, we need a
TCORBAConnection component
(instead of DCOMConnection), and
we need to set the RepositoryId of
the CorbaConnection1 component
to the value of the Server applica-
tion and the Remote Data Module,
being MidasServer/DrBobMidas in
this case. Now we can add the
TClientDataSet, TDataSource,
TDBGrid and TDBNavigator compo-
nents just like we did for the
MidasClient application.

One word of caution: experience
has taught me that when we try to
connect the CORBA Client (ie set
the Connected property of the
CorbaConnection1 component to
True), sometimes the MIDAS/
CORBA Server cannot be found.
This can be solved by making sure
the VisiBroker Smart Agent is
loaded first (some people even
load the Smart Agent in their
Startup group).

Now, let’s change the label cap-
tion of this previously MIDAS-only
server, and set it to Dr.Bob’s MIDAS
& CORBA Server. If we then both set
the Connected property of the
DCOMConnection1 and CORBA-
Connection1 components to True,
then we can see the MidasServer
now serving both the MidasClient
and the CorbaClient (so the
MidasServer is now actually using
DCOM and CORBA at the same
time): see Figure 6.

➤ Figure 3

➤ Figure 4

30 The Delphi Magazine Issue 38

Disconnecting one of the thin
clients from the server means that
one is using cached data from the
TClientDataSet, while the other is
still connected to the Server itself.

Wrappers
Since almost all the source code is
generated automatically by Delphi
(we just set some property values),
I’ve decided not to provide you
with the source on disk. In fact,
after having written this article, I’m
more convinced than ever that the
only way to truly learn how to use
MIDAS and CORBA in your Delphi
projects is to sit down and do it.

Next Time
Next time, we’ll actually use the
described technique to write a dis-
tributed real-world application.
The purpose of the application will
be to monitor and track website
visitors, going from page to page,
and actually reporting frequently
visited paths. Quite insightful for

➤ Figure 5

webmasters, and just plain fun to
watch. The techniques will proba-
bly include a MIDAS/CORBA ‘track-
ing’ application (on the web
server) and an ActiveForm thin
client application (on the client
machine). Stay tuned...

Acknowledgements
More technical information about
MIDAS can be found on the Inprise
website at www.inprise.com/
midas. Thanks to Hubert A Klein

➤ Figure 6

Ikkink (aka Mr.Haki, visit
www.drbob42.com/jbuilder) for
his help and useful feedback while
writing this article.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a profes-
sional knowledge engineer tech-
nical consultant using Delphi,
JBuilder and C++Builder for
Bolesian (www.bolesian.com)
and freelance technical author.

unit Unit2;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ComServ, ComObj, VCLCom, StdVcl, BdeProv, DataBkr, DBClient, MidasServer_TLB,
Db, DBTables, CorbInit, CorbaObj, ComCorba, CorbaVcl;

type
TDrBobMidas = class(TRemoteDataModule, IDrBobMidas)
TableCustomer: TTable;

private
public
protected
function Get_TableCustomer: IProvider; safecall;

end;
var DrBobMidas: TDrBobMidas;
implementation
{$R *.DFM}
function TDrBobMidas.Get_TableCustomer: IProvider;
begin
Result := TableCustomer.Provider;

end;
initialization
TCorbaVclComponentFactory.Create('DrBobMidasFactory', 'DrBobMidas',
'IDL:MidasServer/DrBobMidasFactory:1.0', IDrBobMidas, TDrBobMidas,
iMultiInstance, tmSingleThread);

TComponentFactory.Create(ComServer, TDrBobMidas,
Class_DrBobMidas, ciSingleInstance, tmSingle);

end.

➤ Listing 2

	TClientDataSet
	The MIDAS Server
	The MIDAS Client
	Briefcase Model
	CORBA
	Wrappers
	Next Time
	Acknowledgements

